(This is a reproduction of a book published before 1923. T...)
This is a reproduction of a book published before 1923. This book may have occasional imperfections
such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact,
or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections,
have elected to bring it back into print as part of our continuing commitment to the preservation of printed works
worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book.
++++
The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification:
++++
Monographs On Biochemistry, Volume 8; Monographs On Biochemistry
Sir Frederick Gowland Hopkins
s.n., 1912
(
This work has been selected by scholars as being cultur...)
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Sir Frederick Gowland Hopkins was an English biochemist.
Background
Frederick Gowland Hopkins was born to Frederick Hopkins and Elizabeth Gowland Hopkins on June 20, 1861 in the town of Eastbourne in Sussex, England. Hopkins’ father used to sell books but he also had a deep interest in science.
His father left this world at the time when Fredrick was still a toddler.
Education
His mother took care of his early education in Eastbourne. In the year 1871, the family moved to Enfield in London and the young lad took admission at the ‘City of London School’.
At the ‘City of London School’, Hopkins proved to be a bright student who excelled in academics and in the year 1874 he managed to get a first class in his favourite subject, chemistry graduating at the young age of 17.
After leaving school he worked as a clerk in an insurance firm and then became an associate at the ‘Institute of Chemistry’, where his findings on poisons were immensely appreciated. In the meantime, he took advantage of the ‘University of London External Programme’ and earned his B. Sc. in 1888.
In the year 1889, Frederick won the ‘Sir William Gull Studentship’ and took admission to ‘Guy’s Hospital’ to study medicine. It was five years later that he graduated with a degree.
Career
In 1898 he joined the physiological department at Cambridge University as a lecturer in order to develop teaching and research in physiological chemistry.
Hopkins's first mature research paper concerned the chemistry of the pigments of butterflies' wings. His first work on this topic appeared in 1889, but his complete research was not published until 1896 in Philosophical Transactions of the Royal Society as "Pigments of Pieridae. " Hopkins showed that the opaque white substance in the wings of this butterfly was uric acid—an example of the use of a normal excretory product for purposes of ornamentation. His research on butterfly pigments led him to extend his work to uric acid problems in humans. In 1893 he published two papers describing a new method for determining uric acid in urine, which remained standard practice for many years. He published papers in 1898 and 1899 on the relation of uric acid excretion to diet, a reflection of the interest at that time in gout and its relation to uric acid formation.
Hopkins had not been long at Cambridge when he produced a piece of classic research that immediately brought him to the forefront of physiological chemists. While investigating the cause of failure of the Adamkiewicz color test (now called the glyoxylic test) for proteins, he found that the reaction was due not to acetic acid itself but to glyoxylic acid, an impurity. He then used his analytical skill to discover what substance in protein gave this purple color and consequently isolated the hypothetical amino acid tryptophan from the other amino acids present in protein digests. Rather than turning to another subject, Hopkins began feeding experiments with mice to ascertain the role of the newly discovered tryptophan in the diet. He found that although the tryptophan did not make the mice grow, it extended their life-span considerably. This experiment, one of the earliest (1907) demonstrating the importance of quality of diet, was one of the essential classic tests which brought this aspect of nutrition to the attention of the scientific world.
Hopkins's task at Cambridge, supplemented by tutorial work at Emmanuel College, left him little time for research. In 1910 Trinity College granted him a fellowship and appointed him praelector in physiological chemistry, a position with no formal obligations other than his own research.
Hopkins's work on vitamins, summarized in his 1912 publication "The Importance of Accessory Food Factors in Normal Dietaries, " is generally regarded as his masterpiece. Although other claimants for the honor exist, there is no doubt that Hopkins was the first to realize the full significance of the experimental facts about vitamins. His work had a far-reaching effect on nutritional research all over the world.
His life's work had been "the exploration of the chemistry of intermediary metabolism, and the establishment of biochemistry as a separate discipline concerned with this active chemistry of the life process, and not merely with its fuels and end-products. "
World War I interrupted Hopkins's research activities. His next major paper, "An Autoxidisable Constituent of the Cell, " was published in 1921. An intervening lecture, "The Dynamic Side of Biochemistry, " an address he gave as president of the Physiological Section of the British Association, is noteworthy in that in it Hopkins stated his outlook on chemical processes in living tissues. He pointed out that metabolic raw material is prepared so that it will be in the form of low-molecular-weight substances, and he underscored the importance of the new idea of endoenzymes as the universal agent of the cell. He also suggested greater use of the direct method of attack to separate from tissues additional examples of the simpler products of metabolic changes, regardless of the small amounts of these that were present.
During the 1920s the study of biological oxidations was dominated by two rival theories which were apparently incompatible: one assumed a process due to activation of pairs of hydrogen atoms by tissue enzymes called dehydrogenases; and the other assumed a process brought about by an oxygen-activating catalyst which contains iron. Both of these processes are now known to be valid, and Hopkins, to some extent, succeeded in reconciling them. He isolated a substance which he called glutathione and showed that it could exist in two interconvertible forms: a reduced form and an oxidized form. He proposed that glutathione functioned as an oxygen-carrying catalyst (called by him a coenzyme), with the disulfide oxidized form acting as the hydrogen acceptor in being reduced and then passing on the hydrogen to oxygen during its spontaneous reoxidation. This proposal seems to have furnished the first hint that intermediate hydrogen transport might occur in living tissues, a now well-established fundamental fact in the field of biological oxidation.
The true measure of Hopkins's importance lay not only in his own research but in the inspiration he provided to numerous biochemists who spread his teachings throughout the world. The number of his students elected to university chairs in biochemistry is particularly impressive. Perspectives in Biochemistry, published in 1937 in honor of his seventy-fifth birthday by a group of Hopkins's students, gives some idea of their productivity.
At the beginning of the 20th century, physiological chemistry and biochemistry were virtually a German monopoly. In England there were literally no biochemists and only a very few physiological chemists. At the time of Hopkins's retirement, British biochemists were the equal of any in the world.
He died on 16 May 1947 in Cambridge and is buried at the Parish of the Ascension Burial Ground in Cambridge, with wife Lady Jessie Ann Hopkins.
Achievements
Sir Frederick Gowland Hopkins was the first to recognize the necessity for "accessory factors" in the diet, thereby initiating important work in vitamin research. He was awarded the Nobel Prize in Physiology or Medicine in 1929, with Christiaan Eijkman, for the discovery of vitamins, even though Casimir Funk, a Polish biochemist, is widely credited with discovering vitamins. He also discovered the amino acid tryptophan, in 1901.
During his life, in addition to the Nobel Prize, Hopkins was awarded the Royal Medal of the Royal Society in 1918 and the Copley Medal of the Royal Society in 1926. Other significant honours were his election in 1905 to fellowship in the Royal Society, Great Britain's most prestigious scientific organisation; his knighthood by King George V in 1925; and the award in 1935 of the Order of Merit, Great Britain's most exclusive civilian honour.
Quotations:
"A cell has a history; its structure is inherited, it grows, divides, and, as in the embryo of higher animals, the products of division differentiate on complex lines. Living cells, moreover, transmit all that is involved in their complex heredity. I am far from maintaining that these fundamental properties may not depend upon organisation at levels above any chemical level; to understand them may even call for different methods of thought; I do not pretend to know. But if there be a hierarchy of levels we must recognise each one, and the physical and chemical level which, I would again say, may be the level of self-maintenance, must always have a place in any ultimate complete description. "
"As a progressive discipline [biochemistry] belongs to the present century. From the experimental physiologists of the last century it obtained a charter, and, from a few pioneers of its own, a promise of success; but for the furtherance of its essential aim that century left it but a small inheritance of facts and methods. By its essential or ultimate aim I myself mean an adequate and acceptable description of molecular dynamics in living cells and tissues. "
"But, further, no animal can live upon a mixture of pure protein, fat and carbohydrate, and even when the necessary inorganic material is carefully supplied, the animal still cannot flourish. The animal body is adjusted to live either upon plant tissues or the tissues of other animals, and these contain countless substances other than the proteins, carbohydrates and fats. .. In diseases such as rickets, and particularly in scurvy, we have had for long years knowledge of a dietetic factor; but though we know how to benefit these conditions empirically, the real errors in the diet are to this day quite obscure. They are, however, certainly of the kind which comprises these minimal qualitative factors that I am considering. "
"It is an old saying, abundantly justified, that where sciences meet there growth occurs. It is true moreover to say that in scientific borderlands not only are facts gathered that [are] often new in kind, but it is in these regions that wholly new concepts arise. It is my own faith that just as the older biology from its faithful studies of external forms provided a new concept in the doctrine of evolution, so the new biology is yet fated to furnish entirely new fundamental concepts of science, at which physics and chemistry when concerned with the non-living alone could never arrive. "
"My main thesis will be that in the study of the intermediate processes of metabolism we have to deal not with complex substances which elude ordinary chemical methods, but with the simple substances undergoing comprehensible reactions. .. I intend also to emphasise the fact that it is not alone with the separation and identification of products from the animal that our present studies deal; but with their reactions in the body; with the dynamic side of biochemical phenomena. "
"One reason which has led the organic chemist to avert his mind from the problems of Biochemistry is the obsession that the really significant happenings in the animal body are concerned in the main with substances of such high molecular weight and consequent vagueness of molecular structure as to make their reactions impossible of study by his available and accurate methods. There remains, I find, pretty widely spread, the feeling—due to earlier biological teaching—that, apart from substances which are obviously excreta, all the simpler products which can be found in cells or tissues are as a class mere objects, already too remote from the fundamental biochemical events to have much significance. So far from this being the case, recent progress points in the clearest way to the fact that the molecules with which a most important and significant part of the chemical dynamics of living tissues is concerned are of a comparatively simple character. "
"When physiologists revealed the existence and functions of hormones they not only gave increased opportunities for the activities of biochemists but in particular gave a new charter to biochemical thought, and with the discovery of vitamins that charter was extended. "
Membership
From 1930 -1935 he served as president of the Royal Society and in 1933 served as President of the British Association for the Advancement of Science.
Personality
During his last few years, Hopkins, who was the ablest analyst and medical specialist in England, suffered from a number of increasing disabilities, including loss of sight.
Connections
In 1898 he married Jessie Anne Stephens (1861–1937); they had one son and two daughters, one of whom, Jacquetta Hawkes, was married to J. B. Priestley, the author.