Julius Lothar Meyer was a German chemist. He was one of the pioneers in developing the first periodic table of chemical elements.
Background
Lothar Meyer was born on August 19, 1830, in Varel, Germany (then part of the Duchy of Oldenburg). He was the fourth of seven children of Heinrich Friedrich August Jacob Meyer, a prominent physician in Varel. His mother, the former Anna Sophie Wilhelmine Biermann, was the daughter of another physician of that town. Both Lothar and his brother, Oskar Emil, later a physicist, began their studies with the intention of entering medicine. He never used his first given name and was known throughout his life simply as Lothar Meyer.
Education
Meyer first attended a private school, then the newly founded Bürgerschule in Varel, supplementing this education with private instruction in Latin and Greek. Delicate in his early years, he suffered such severe headaches at age fourteen that his father advised complete discontinuance of academic studies and placed him as an assistant to the chief gardener at the summer palace of the grand duke of Oldenburg, at Rastede. After a year his health was sufficiently restored for him to enter the Gymnasium at Oldenburg, from which he graduated in 1851.
In the summer of that year, Meyer began to study medicine at the University of Zurich, and in 1853 he moved to Würzburg, where Virchow was lecturing on pathology. He received the Doctor of Medicine the following year. Encouraged by Carl Ludwig, his former physiology professor at Zurich, Meyer turned from medicine to physiological chemistry and went to Heidelberg to study under Bunsen. The latter’s work on gas analysis particularly attracted him, and in 1856 Meyer completed his investigation Ueber die Gase des Blutes, which was accepted by the Würzburg Faculty of Medicine as his doctoral dissertation. F. Beilstein, H. H. Landolt, H. E. Roscoe, A. von Baeyer, and F. A. Kekulé were in Heidelberg at the same time. Lectures by Kirchhoff moved Meyer further toward physical chemistry.
At the suggestion of his brother, Meyer moved to Königsberg in the fall of 1856, to attend Franz Neumann’s lectures on mathematical physics. He also pursued there his earlier physiological interests by studying the effect of carbon monoxide on the blood. When he moved to Breslau in 1858, this investigation was accepted by the Philosophy Faculty as his dissertation for the Doctor of Philosophy.
Career
In February 1859 Meyer established himself as Privatdozent in physics and chemistry at Breslau with a critical historical work, “Uber die chemischen Lehren von Berthollet und Berzelius.” That same spring he took over the direction of the chemical laboratory in the physiological institute and lectured on organic, inorganic, physiological, and biological chemistry. During his stay at Breslau, the first edition of his Die modernen Theorien der Chemie umi ihre Bedeutung fur die chemische Statik appeared (1864). It went through five editions and was translated into English, French, and Russian.
Meyer had attended the 1860 Karlsruhe Congress, where he heard Cannizzaro and read his paper on the use of Avogadro’s hypothesis and the law of Dulong and Petit in establishing atomic weights and formulas. Meyer edited Cannizzaro’s paper for Oswald's Klassiker der Exacten Wissenschaften and describes in that work how “the scales fell from my eyes and my doubts disappeared and were replaced by a feeling of quiet certainty.” Meyer’s Moderne Theorien was a direct outcome of that experience. In a brief obituary in 1895 the book was described as “not especially well received at first, but as years passed it exerted a more and more powerful influence on the thoughts of chemists. From a flimsy pamphlet it grew to a stately volume, and it has generally been recognized as the best presentation of the fundamental principles of chemistry until the physicochemical movement beganю
Meyer was called to the School of Forestry at Neustadt-Eberswalde in 1866 for his first independent position. In 1868 Meyer succeeded C. Weltzien as professor of chemistry and director of the chemical laboratories at the Karlsruhe Polytechnic Institute. His final move, in 1876, was to Tubingen, where he taught until his death.
Two major events occurred in the early years of Meyer’s stay at Karlsruhe. Mendeleev’s 1869 paper on the periodic table led him to submit his own matured ideas for publication in December of that year. The paper was published in March 1870. In the summer of 1870 the Franco-Prussian War broke out; and Meyer made use of his medical abilities, helping to organize an emergency hospital in the buildings of the Polytechnic.
Meyer’s Tubingen years, at last, offered an opportunity for the intensive pursuit of his major interests. In excellent health until his sudden death, he guided the work of over sixty doctoral candidates; and with his associate Karl Seubert he published a careful analysis of the best atomic weight determinations available until then. In 1890 Meyer published Grundzuge der theoretischen Chemie, a less technical account of the theoretical foundations of chemistry than the later editions of his Moderne Theorien had become.
Meyer was concerned with higher education and gave a number of lectures-later published - on that subject. For the year 1894–1895 he was elected rector of Tubingen University.
Meyer’s earliest research dealt with physiological aspects of the uptake of gases by the blood. Building on previous studies by G. Magnus, he was able to demonstrate in 1856 that oxygen absorption by blood in the lungs occurs independently of pressure. This suggested to him that some possibly loose chemical linkage occurred. When he turned his attention to carbon monoxide poisoning, Meyer demonstrated a similar chemical linkage between that gas and a constituent of the blood. Further, he found that the amounts of oxygen and carbon monoxide taken up by the blood were in a simple molecular ratio, the carbon monoxide being able to expel volume for volume the oxygen already in the blood. This suggested to him that the same constituent of blood reacted with both gases. His preliminary searches for this constituent were unsuccessful. Hemoglobin was discovered by Hoppe-Seyler in 1864.
Although these physiological studies were of considerable importance, Meyer’s greatest achievement is no doubt tied to his work on the periodic classification of the elements. Meyer and Mendeleev both received their major stimulus for these considerations at the 1860 Karlsruhe Congress through Cannizzaro’s paper on atomic weights. By 1862, Meyer had completed the manuscript of Moderne Theorien, including a table of twenty-eight elements in order of increasing atomic weight. Meyer felt that by the early 1860s considerable unity had finally been achieved regarding the fundamental principles of chemistry, and it was the purpose of his book to present these theoretical foundations.
Meyer’s independent establishment of the central principles underlying the periodic table of the elements was demonstrated in 1893, when Adolf Remele, his successor at Neustadt-Eberswalde, showed him a handwritten draft periodic table designed by Meyer for the second edition of Moderne Theorien and given to Remele in July 1868. Its notation “§91” makes clear its intended use for the second edition. It differs from the 1864 table mainly by the addition of twenty-four elements and nine families. These were the B-subgroups, the characteristics of which Meyer later claimed to have discovered independently. Hydrogen, boron, and indium are not in the table, and aluminum appears in both column 3 and column 4. Boron, indium, and aluminum properly belong in a family between columns 7 and 8. Meyer placed lead (Pb) correctly in column 8, while Mendeleev put it with calcium, strontium, and barium. Remele’s disclosure was published by Seubert after Meyer’s death.
In Meyer’s classic paper of 1870, he adopted Mendeleev’s use of a vertical form for the periodic table, publishing a table (Figure 3) in which the relation of the A- and B-subgroups of the chemical families is for the first time clearly indicated.7 He also attached his graphical representation of the variation of atomic volume of the solid elements (volume divided by atomic weight) when plotted against atomic weight (Figure 4), for which he is most generally known. Both Meyer and Mendeleev emphasized that there is a periodic variation, a succession of maxima and minima, in several physical and chemical properties when they are examined as functions of atomic weight. Meyer began this paper with the assertion that it is most improbable that the chemical elements are absolutely undecomposable and referred to the ideas of Prout, Pettenkofer, and Dumas. As for the gaps in the table, he suggested that they would be filled through careful redeterminations of the atomic weights of known elements or through the discovery of new ones.
The significance of atomic weights in the demonstration of chemical periodicity and the suspicion that some atomic weights were not accurate led Meyer and Seubert to examine critically and to recalculate all atomic weights then considered important. Their study was published in 1883. All atomic weights were referred to the standard of unity for the atomic weight of hydrogen, a standard Meyer championed. Wilhelm Ostwald, on the other hand, strongly urged the adoption of O = 16,000 as standard, a view accepted in 1898 by a special committee of the German Chemical Society consisting of Landolt, Ostwald, and Seubert.
Meyer studied a number of benzene substitution reactions, particularly the nitration of benzene and its derivatives. He examined the effects of time, temperature, solvent, and concentration of reagents, feeling that chemists must go beyond a mere interest in the nature and quantity of products and must subject chemical reactions themselves to quantitative study. He examined reagents that facilitated chlorination and oxidation, the so-called chlorine and oxygen carriers, thus laying some of the groundwork for Ostwald’s extensive revision of the concept of catalysis (1894). Meyer’s studies of the effects of reagent concentration on chemical reactions served to confirm the law of mass action enunciated by C. M Goldberg and P. Waage. In the fourth edition of Moderne Theorien (1883), he included a major new section, constituting more than a third of the book, entitled “Dynamik der Atome.”
Meyer and his students investigated a number of physical properties, such as the boiling points, of structurally related organic compounds, seeking relations between these properties and molecular structure. His wide-ranging interests and mechanical skill led Meyer to devise or improve many pieces of apparatus, often adopted by other chemists. He pleaded with chemists to systematize inorganic chemistry on the basis of the periodic table, in order to approach the organization of subject matter achieved in organic chemistry.
Achievements
Meyer was one of the pioneers in developing the first periodic table of chemical elements. He received the Davy Medal of the Royal Society jointly with Mendeleev in 1882. In 1883 he became a foreign honorary member of the Chemical Society (London) and in 1888 and 1891 corresponding member of the Prussian and St. Petersburg Academies of Sciences, respectively. He was given a title of nobility by decree of the Wurttemberg crown in 1892.
Meyer saw J. W. Dobereiner and M. von Pettenkofer as his direct precursors and later edited their key papers.
Meyer pleaded with chemists to systematize inorganic chemistry on the basis of the periodic table, in order to approach the organization of subject matter achieved in organic chemistry.
Membership
Meyer was a member of the Chemical Society of London, the Saint Petersburg Academy of Sciences, and the Royal Prussian Academy of Sciences.
Then the Chemical Society of London
Royal Society of Chemistry
,
United Kingdom
Saint Petersburg Academy of Sciences
,
Russia
Then the Royal Prussian Academy of Sciences
Berlin-Brandenburg Academy of Sciences and Humanities
,
Kingdom of Prussia
Personality
Outside his work in chemistry, Meyer read Greek and Latin classics and retained his love for gardening, learned in his youth.
Interests
gardening
Connections
Meyer married Johanna Volkmann on August 16, 1866. They had four children.