Background
Loewi was born on June 3, 1873, in Frankfurt, German Empire (now Germany), the first child and only son of Jakob Loewi, a wealthy wine merchant, and his second wife, Anna Willstädter.
1936
Lowei won the Nobel Prize for physiology and medicine in 1936 (together with Sir Henry Dale) “for the fundamental discovery of the chemical transmission of nerve impulses."
Wieckestraße 1b, 15230 Frankfurt (Oder), Germany
At the Frankfurter Städtisches Gymnasium, where Loewi studied from 1882 to 1891, his record was much better in the humanities than in physics and mathematics, and he hoped to pursue a career in the history of art.
4 Rue Blaise Pascal, 67081 Strasbourg, France
For pragmatic reasons, however, his family wanted Loewi to study medicine, and in 1891 he matriculated as a medical student at the University of Strasbourg. He graduated Doctor of Medicine in 1896.
Sir Henry Dale and Otto Loewi
Pharmacologist scientist psychobiologist
Loewi was born on June 3, 1873, in Frankfurt, German Empire (now Germany), the first child and only son of Jakob Loewi, a wealthy wine merchant, and his second wife, Anna Willstädter.
At the Frankfurter Städtisches Gymnasium, where Loewi studied from 1882 to 1891, his record was much better in the humanities than in physics and mathematics, and he hoped to pursue a career in the history of art. For pragmatic reasons, however, his family wanted him to study medicine, and in 1891 he matriculated as a medical student at the University of Strasbourg, Loewi found the preclinical studies there uninteresting and preferred during his first two years to attend the lectures of the philosophical faculty. After barely passing his first medical examination (Physikum) in 1893, Loewi spent the next two semesters at Munich and then returned to Strasbourg, where Bernhard Naunyn’s clinical lectures now attracted his attention. Nevertheless, with little or no preparation in the subject, Loewi chose to write his dissertation on a topic in pharmacology. Under the direction of the renowned teacher and pharmacologist Oswald Schmiedeberg, he worked on the effects of various drugs on the isolated heart of the frog. Although quite typical of the work done in Schmiedeberg’s laboratory, this choice of topic adds force to Loewi’s own retrospective testimony that his interest in basic science had been aroused in part by reading Walter Holbrook Gaskell’s Croonian lecture of 1883 on the isolated heart of the frog.
After graduating Doctor of Medicine from Strasbourg in 1896, Loewi took a course in analytical inorganic chemistry from Martin Freund in Frankfurt and then studied physiological chemistry for several months in Franz Hofmeister’s laboratory in Strasbourg.
In 1897-1898 Loewi served as Carl von Noorden’s assistant in internal medicine at the city hospital in Frankfurt. Assigned to wards for advanced tuberculosis and epidemic pneumonia, Loewi was discouraged by the lack of therapy and resultant high mortality for these cases and later claimed that it was because of this experience that he chose basic research over a clinical career. From 1898 to 1904 Loewi was assistant to Hans Horst Meyer at the pharmacological institute of the University of Marburg. His Habilitationschrift, which brought him the title of Privatdozent in 1900, dealt with nuclein metabolism in man. During 1902-1903 Loewi spent several months in England, which he believed had by then replaced Germany as the world’s leading center for physiology. At E. H. Starling’s laboratory in London, where he spent most of this time, and during a brief visit at Cambridge, he met and exchanged ideas with the leading English physiologists of the day, including Walter Gaskell, John Newport Langley, Thomas Renton Elliott, and Dale. Despite the brevity of this trip, it clearly exerted an important influence on Loewi’s later research interests and achievements.
In 1904 Loewi was appointed assistant professor at Marburg and briefly succeeded Meyer as director of the pharmacological institute there. In 1905 he followed Meyer to the University of Vienna to serve again as his assistant. He was appointed assistant professor at Vienna in 1907 and in 1909 accepted a post as professor and head of pharmacology at the University of Graz. Despite offers from more famous universities, including Vienna, Loewi remained at Graz until his expulsion by the Nazis in 1938. Like other male Jewish citizens of Graz, Loewi and two of his four children were imprisoned in March of that year. He was released two months later and in September was allowed to leave for London, but only after the Gestapo had forced him to transfer his Nobel Prize money from a bank in Stockholm to a bank under Nazi control. Meanwhile the Nazis detained his wife while seeking to dispossess her of some real estate in Italy. Stripped of all property and means, Loewi managed during the next year or so to secure invitations to work at the Franqui Foundation in Brussels and then at the Nuffield Institute, Oxford. From 1940 until his death he was research professor of pharmacology at the College of Medicine, New York University. In 1941 his wife was at last able to rejoin him, and in 1946 Loewi became a naturalized citizen of the United States. While in his adopted country, he spent his summers at the Marine Biological Laboratory in Woods Hole, Massachusetts, where his remains are buried.
Loewi neurological researches provided the first proof that chemicals were involved in the transmission of impulses from one nerve cell to another and from neuron to the responsive organ. In addition to researches on the nervous system, he studied diabetes and the action of the drugs digitalis and epinephrine. He devised Loewi’s test for the detection of pancreatic disease.
Although the range of Loewi’s research interests and studies was vast, his most influential work fell into two broad categories: protein and carbohydrate metabolism; and the autonomic nervous system, especially the cardiac nerves. Other major interests were the pharmacology and physiology of the kidney and the physiogical role of cations. Loewi produced work in all of these areas quite early in his career, and the later fame of his work on the chemical transmission of nerve impulses ought not to obscure his continued interest in other areas.
In his earliest publications on metabolism Loewi argued that of the components of urinary secretion, only the uric acid depended on diet. These studies were followed by papers on phlorizin-induced glycosuria and on the question whether fat could be converted into sugar in dogs; Loewi concluded that it could not. His greatest contribution to metabolic studies, dealing with protein synthesis in the animal body, appeared as early as 1902. Since no one had previously been able to maintain nitrogen balance in animals by feeding them with the degradation products of protein in place of the original protein itself, it was supposed that animals were incapable of protein synthesis.
Thus, for several years before 1921 Loewi had been turning increasingly to the physiology and pharmacology of the frog’s heart and its nerves. But none of this research led directly to the work for which he won the Nobel Prize. In fact, there is an element of mystery and drama in the way Loewi came to demonstrate experimentally the chemical transmission of nervous impulses. By the time he did so, in 1921, the hypothesis of chemical transmission was nearly twenty years old.
With the publication in 1936 of the fourteenth and final paper in the series on humoral transmission, the truly creative phase of Loewi’s research career came to an end. Especially after 1938, when the Nazis forced him out of Graz, Loewi’s main role was that of critic, reviewer, and guide for those who more actively pursued the new lines of research opened up by the discovery of the chemical transmission of nervous impulses. This discovery in fact inaugurated a conceptual revolution in neurophysiology. Besides offering an entirely new mode of thinking about such phenomena as inhibition and summation, the concept of chemical transmission had clinical implications as well, particularly with regard to certain symptoms of neurological hyperactivity formerly regarded as purely reflex in nature. Loewi himself often reflected on these questions as well as on the implications of chemical transmission for general physiology and biology. For him, the existence of chemical transmission seemed to give further support to the organismic conception of the living body as an adaptive, regulated, delicately coordinated, and peculiarly biological mechanism, In his inclination toward overtly teleological thinking, in his abiding love of music, art, and culture in general, and in his profound moral and humanitarian sensitivity, Loewi maintained to the end a kinship with that young aspiring historian of art who had been deflected by circumstance into a richly creative career in science.
Loewi was described as a man with a keen sense of humor.
Quotes from others about the person
In 1946 Frederick Yonkman of Columbia University paid the following tribute to him: “This unusual man of science, driven from his native Austria by Nazi madness, was deprived of all his tangible possessions and not even permitted to use his Nobel Prize money. This exceptional individual was not soured by these harrowing experiences but rather he was stimulated by adversity to new heights of achievement."
Loewi married Guida Goldschmiedt in 1908. They had three sons and a daughter.