Lord Rayleigh, in full John William Strutt, 3rd Baron Rayleigh of Terling Place, was an English physical scientist who made fundamental discoveries in the fields of acoustics and optics that are basic to the theory of wave propagation in fluids. He was awarded the Nobel prize for the discovery of the gas Argon.
Background
John William Strutt was born on 12 November 1842 at Langford Grove in Maldon, Essex. John William Strutt's father (born about 1797 in Harley Street, London) was the second Baron Rayleigh of Terling Place, Witham, in the county of Essex. His mother was Clara Elizabeth Latouche Vicars (born in Port Louis, Mauritius about 1825). John William Strutt had younger siblings, Clara (born about 1845), Richard (born about 1848), Charles (born about 1850) and Edward (born about 1855). Certainly, it was a family with little previous interest in science for they were mostly landowners with interests in the countryside.
Education
As a boy Rayleigh suffered from poor health and his schooling at both Eton and Harrow was disrupted. He had to leave both schools after a short period due to health problems. Four years spent at the Reverend Warner's boarding school prepared Rayleigh for university and at this stage he did begin to show signs of mathematical ability. During these four years he had a private tutor but overall he showed little sign of being anything other than an average child of average ability.
He entered Trinity College, Cambridge, in October 1861 where he took the mathematical Tripos. His menthor at Cambridge was Edward Routh who, in addition to being the most famous of the Cambridge coaches at that time (perhaps of all time), was himself a very fine applied mathematician making important contributions to dynamics. There is no doubt that the grounding in mathematical techniques which Rayleigh had from Routh was an important factor in his outstanding scientific career. It was more than just the mathematics which he learned that was important to him, for in addition, he learned from Routh how to come up with the most appropriate mathematical methods to tackle each problem.
In 1865, he obtained his Bachelor of Science degree, and finished first as Senior Wrangler and first Smith's prize, the two major mathematics contests on the university level. He was awarded a master of arts degree in 1868 and was subsequently elected to a fellowship at Trinity, after which he traveled for a time in the United States.
There was another important influence on Rayleigh during his undergraduate years at Cambridge, namely that of Stokes who was the Lucasian professor of mathematics at the time. Stokes inspired Rayleigh with his lectures which combined theory and practice in a novel way with many physical experiments being carried out during the lectures. Students did not have the opportunity to undertake physics experiments themselves, so seeing Stokes perform experiments in his course on light was Rayleigh's only exposure to the experimental side of science. Rayleigh himself later spoke of how important a role Stokes had played in his development as a scientist. However Stokes does not appear to have directly encouraged Rayleigh to undertake a scientific career.
If Rayleigh had been an average school pupil he was far from an average student. He was awarded an astronomy scholarship in 1864, then in the Tripos examinations of 1865 he was Senior Wrangler (the top First Class student) and in the same year, he was the first Smith's prizeman. One has to understand that Rayleigh was now faced with a difficult decision. For someone in his position, knowing that he would succeed to a title and become the third Baron Rayleigh, taking up a scientific career was not really acceptable, and certainly, various members of his family felt exactly that way. By this time, however, Rayleigh was determined to devote his life to science so he was certain in his own mind that his social obligations must not stand in his way.
Strutt's first paper was inspired by reading Maxwell's 1865 paper on electromagnetic theory. It was through reading widely the current scientific literature that Rayleigh tried to work out which were the important problems on which he should undertake research. The other scientist whose works he studied deeply was Helmholtz, in particular reading Helmholtz's 1860 results on the acoustic resonator. In 1866 Rayleigh was elected a Fellow of Trinity College, Cambridge, and he was poised to make his mark in science.
The usual course of action for young British men of social standing at this time was to take a European tour - the grand tour as it was called. Rayleigh, surprisingly, made a very different, and for that time unusual, tour for he set out on a trip to the United States. One advantage of Rayleigh's privileged social position was that he did not need an academic post to earn his living. Rather when he returned from the United States he purchased equipment for undertaking scientific experiments and set it up on the family estate at Terling. He did experiments on the galvanometer and presented his results to the British Association meeting in Norwich in 1868.
Rayleigh's theory of scattering, published in 1871, was the first correct explanation of why the sky is blue. In the same year, he married Evelyn Balfour, the sister of Arthur James Balfour who was to be a leading member of the Conservative Party for 50 years and Prime Minister of Britain 30 years later. Rayleigh had been a student at Cambridge with Arthur James Balfour and through him had met Evelyn. Shortly after their marriage Rayleigh had an attack of rheumatic fever which nearly brought his scientific activities to a premature end. He was advised to travel to Egypt and indeed he did just this with his wife. They sailed down the Nile during the last months of 1872 and early 1873, returning to England in the spring of 1873.
It was a trip during which Rayleigh recovered his health but it was also a very profitable trip from a scientific point of view. Rather remarkably he began writing a major text The Theory of Sound while on the trip. It was five years after beginning this great classic before it appeared in print. The first volume, on the mechanics of a vibrating medium which produces sound, was published in 1877, while the second volume on acoustic wave propagation was published the following year.
Shortly after returning from his trip down the Nile, Rayleigh's father died and Strutt, as he had been up to that time, succeeded to the title becoming the third Baron Rayleigh. He continued working at Terling where he now took up residence. The laboratory which he had set up there was one where he made impressive discoveries but one should not think that this was because the rich Rayleigh was able to have better equipment than anyone else. On the contrary, he obtained impressive experimental results with cheap equipment. Rayleigh was always one to economize and make do with unsophisticated equipment. Also he was not as well off as might have been expected, for the 1870s were a time of economic problems for farming in England and as a consequence his income was far less than might otherwise have been the case.
From 1879 to 1884 Rayleigh was the second Cavendish professor of experimental physics at Cambridge. The laboratory had been opened five years earlier and Maxwell had been the first Cavendish professor. On the academic side Rayleigh was an obvious choice to succeed to Maxwell's chair, yet in other times he might have been content to work at Terling. The agricultural depression however swung the balance making the income from the post look attractive. There was no suggestion, however, that Rayleigh was just there for the money. On the contrary he took his duties very seriously making very substantial improvements to the teaching of physics at Cambridge.
One of the important pieces of experimental work he carried during his time as Cavendish professor was a standardisation of the ohm. Maxwell and Chrystal had carried out experiments in Cambridge earlier and the apparatus was still available for Rayleigh. However, the old equipment did not prove good enough to allow Rayleigh to obtain the accuracy he required and so he had new apparatus built. In his Presidential Address to the British Association in Montreal in 1884, he explained the results. He introduced the topic by saying: "During the last few years much interest has been felt in the reduction to an absolute standard of measurements of electromotive force, current, resistance, etc. and to this end many laborious investigations have been undertaken. The subject is one which has engaged a good deal of my own attention..."
Then in 1884 he resigned his Chair at Cambridge to return to his research on his own estate at Terling. His financial position had improved and what he loved was scientific research, without the time-consuming responsibilities of a university post. There were many colleagues who tried to get him to reconsider his action and continue to hold the chair but Rayleigh knew exactly what he wanted from life. It was not a solitary scientific existence for him in Terling since he made frequent visits to London where he had duties to perform for many learned and scientific societies. Let us look briefly at some of his activities in this area.
Other activities which deserve mention involve the work he put in helping towards establishing the National Physical Laboratory which was set up at Teddington in Middlesex. He was appointed scientific advisor to Trinity House, the association of English seamen, in 1896. Connected with the political scene through his wife, he was much involved in advisory roles such as serving on a committee on aeronautics.
Rayleigh is perhaps most famous for his discovery the inert gas argon in 1895, work which earned him a Nobel Prize in 1904. Precision measurements of the density of gases conducted by him in the 1880s led to the interesting discovery that the density of nitrogen obtained from the atmosphere is greater by a small though definite amount than is the density of nitrogen obtained from one of its chemical compounds, such as ammonia. Excited by this anomaly and stimulated by some earlier observations of the ingenious but eccentric 18th-century scientist Henry Cavendish on the oxidation of atmospheric nitrogen, Rayleigh decided to explore the possibility that the discrepancy he had discovered resulted from the presence in the atmosphere of a hitherto undetected constituent. After a long and arduous experimental program, he finally succeeded in 1895 in isolating the gas, which was appropriately named argon, from the Greek word meaning "inactive." Rayleigh shared the priority of the discovery with the chemist William Ramsay, who also isolated the new gas, though he began his work after Rayleigh’s publication of the original density discrepancy. Shortly before winning the Nobel Prize, Rayleigh wrote the entry on argon for the 10th edition (1902) of the Encyclopædia Britannica.
In his later years, when he was the foremost leader in British physics, Rayleigh served in influential advisory capacities in education and government. In 1908 he accepted the post of chancellor of the University of Cambridge, retaining this position until his death. He was also associated with the National Physical Laboratory and government committees on aviation and the treasury. Retaining his mental powers until the end, he worked on scientific papers until five days before his death, on June 30, 1919.
Rayleigh was perhaps the most versatile of British physical scientists from about 1850 to 1930 and, like Helmholtz, he covered almost all branches of physics and ventured into other disciplines. John Strutt is credited jointly with William Ramsey with the discovery of the element argon. He also discovered the phenomenon now called Rayleigh scattering, and made important discoveries in fluid dynamics, thermodynamics, and acoustics.
Rayleigh had been elected as a Fellow of the Royal Society in 1873. He received the Royal Medal from the Society in 1882, and became secretary of the Society in 1885, being awarded the Society's Copley Medal in 1899. He gave the Society's Bakerian Lecture in 1902 and he was elected President of the Society in 1905, holding the position until 1908. Rayleigh served as President of the London Mathematical Society in 1876-78 and he was awarded the Society's De Morgan Medal in 1890.
The lunar crater Rayleigh as well as the Martian crater Rayleigh were named in his honor.
Rayleigh was an Anglican. Rayleigh held deep religious convictions, and wished to harmonize these with his scientific pursuits. In the 1870s, influenced by fellow physicist William Crookes, he took an interest in psychical phenomena, and attended seances and sittings with those reputed to have psychic powers. He never confirmed his belief in psychic manifestations, however, even though he retained a lifelong interest in the subject.
His views on spirituality were perhaps best expressed in a letter to an acquaintance. "I have never thought the materialist view possible," he wrote in 1910, with only a decade to live, "and I look to a power beyond what we see, and to a life in which we may at least hope to take part."
Politics
Rayleigh sat in the House of Lords; however, he was interested in politics only when it was connected with science.
Views
Quotations:
"Without encroaching upon grounds appertaining to the theologian and the philosopher, the domain of natural sciences is surely broad enough to satisfy the wildest ambition of its devotees."
"The only merit of which I personally am conscious was that of having pleased myself by my studies, and any results that may be due to my researches were owing to the fact that it has been a pleasure for me to become a physicist."
Membership
Royal Society
,
United Kingdom
London Mathematical Society
,
United Kingdom
Society for Psychical Research
,
United Kingdom
Personality
Rayleigh was a modest and generous man. He donated the proceeds of his Nobel Prize to the University of Cambridge to build an extension to the Cavendish laboratories. On receiving the Order of Merit in 1902 he said: "... the only merit of which I personally am conscious was that of having pleased myself by my studies, and any results that may be due to my researches were owing to the fact that it has been a pleasure for me to become a physicist."
Connections
In 1871, Strutt married Evelyn Balfour, daughter of James Maitland Balfour. The couple had three sons.
Father:
Baron Rayleigh
Mother:
Clara Elizabeth Latouche Vicars
Wife:
Evelyn Balfour
Academic advisor:
Joseph Thomson
Academic advisor:
Edward Routh
References
A History of Aerodynamics
This book presents the history of aerodynamics, intertwined with a review of the aircraft that were developed as technology advanced. Beginning with the scientific theories and experiments of Aristotle and Archimedes, the book continues through the applied and theoretical aerodynamics in the early 1900s, and concludes with modern hypersonic and computational aerodynamics.