Background
William John Macquorn Rankine was born in Edinburgh on the 5th of July in 1820 to British Army lieutenant David Rankine and Barbara Grahame, of a prominent legal and banking family.
(This book was originally published prior to 1923, and rep...)
This book was originally published prior to 1923, and represents a reproduction of an important historical work, maintaining the same format as the original work. While some publishers have opted to apply OCR (optical character recognition) technology to the process, we believe this leads to sub-optimal results (frequent typographical errors, strange characters and confusing formatting) and does not adequately preserve the historical character of the original artifact. We believe this work is culturally important in its original archival form. While we strive to adequately clean and digitally enhance the original work, there are occasionally instances where imperfections such as blurred or missing pages, poor pictures or errant marks may have been introduced due to either the quality of the original work or the scanning process itself. Despite these occasional imperfections, we have brought it back into print as part of our ongoing global book preservation commitment, providing customers with access to the best possible historical reprints. We appreciate your understanding of these occasional imperfections, and sincerely hope you enjoy seeing the book in a format as close as possible to that intended by the original publisher.
http://www.amazon.com/gp/product/B00B6L1QXW/?tag=2022091-20
( This work has been selected by scholars as being cultura...)
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
http://www.amazon.com/gp/product/1341362361/?tag=2022091-20
engineer musician scientist singer
William John Macquorn Rankine was born in Edinburgh on the 5th of July in 1820 to British Army lieutenant David Rankine and Barbara Grahame, of a prominent legal and banking family.
Because of poor health, Rankine received most of his early education at home, being taught at first by his father and later by private tutors.
In 1836 he entered the University of Edinburgh, where he studied natural philosophy under James David Forbes.
Although a successful student, Rankine left Edinburgh in 1838 without a degree.
In 1857 Trinity College, Dublin, conferred on him the degree of LL. D.
The year 1842 also marked Rankine's first attempt to reduce the phenomena of heat to a mathematical form but he was frustrated by his lack of experimental data. At the time of Queen Victoria's visit to Scotland, he organised a large bonfire situated on Arthur's Seat, constructed with radiating air passages under the fuel. The bonfire served as a beacon to initiate a chain of other bonfires across Scotland.
Undaunted, he returned to his youthful fascination with the mechanics of the heat engine. Though his theory of circulating streams of elastic vortices whose volumes spontaneously adapted to their environment sounds fanciful to scientists formed on a modern account, by 1849, he had succeeded in finding the relationship between saturated vapour pressure and temperature. The following year, he used his theory to establish relationships between the temperature, pressure and density of gases, and expressions for the latent heat of evaporation of a liquid. He accurately predicted the surprising fact that the apparent specific heat of saturated steam would be negative.
Emboldened by his success, in 1851 he set out to calculate the efficiency of heat engines and used his theory as a basis to deduce the principle, that the maximum efficiency possible for any heat engine is a function only of the two temperatures between which it operates. Though a similar result had already been derived by Rudolf Clausius and William Thomson, Rankine claimed that his result rested upon his hypothesis of molecular vortices alone, rather than upon Carnot's theory or some other additional assumption. The work marked the first step on Rankine's journey to develop a more complete theory of heat.
Rankine later recast the results of his molecular theories in terms of a macroscopic account of energy and its transformations. He defined and distinguished between actual energy which was lost in dynamic processes and potential energy by which it was replaced. He assumed the sum of the two energies to be constant, an idea already, although surely not for very long, familiar in the law of conservation of energy. From 1854, he made wide use of his thermodynamic function which he later realised was identical to the entropy of Clausius. By 1855, Rankine had formulated a science of energetics which gave an account of dynamics in terms of energy and its transformations rather than force and motion. The theory was very influential in the 1890s. In 1859 he proposed the Rankine scale of temperature, an absolute or thermodynamic scale whose degree is equal to a Fahrenheit degree.
Energetics offered Rankine an alternative, and rather more mainstream, approach, to his science and, from the mid-1850s, he made rather less use of his molecular vortices. Yet he still claimed that Maxwell's work on electromagnetics was effectively an extension of his model. And, in 1864, he contended that the microscopic theories of heat proposed by Clausius and James Clerk Maxwell, based on linear atomic motion, were inadequate. It was only in 1869 that Rankine admitted the success of these rival theories. By that time, his own model of the atom had become almost identical with that of Thomson.
Rankine was one of the first engineers to recognise that fatigue failures of railway axles was caused by the initiation and growth of brittle cracks. In the early 1840s he examined many broken axles, especially after the Versailles train crash of 1842 when a locomotive axle suddenly fractured and led to the death of over 50 passengers. He showed that the axles had failed by progressive growth of a brittle crack from a shoulder or other stress concentration source on the shaft, such as a keyway. He was supported by similar direct analysis of failed axles by Joseph Glynn, where the axles failed by slow growth of a brittle crack in a process now known as metal fatigue. It was likely that the front axle of one of the locomotives involved in the Versailles train crash failed in a similar way. Rankine presented his conclusions in a paper delivered to the Institution of Civil Engineers. His work was ignored however, by many engineers who persisted in believing that stress could cause "re-crystallisation" of the metal, a myth which has persisted even to recent times. The theory of recrystallisation was quite wrong, and inhibited worthwhile research until the work of William Fairbairn a few years later, which showed the weakening effect of repeated flexure on large beams. Nevertheless, fatigue remained a serious and poorly understood phenomenon, and was the root cause of many accidents on the railways and elsewhere. It is still a serious problem, but at least is much better understood today, and so can be prevented by careful design.
Rankine developed a complete theory of the steam engine and indeed of all heat engines. His manuals of engineering science and practice were used for many decades after their publication in the 1850s and 1860s. He published several hundred papers and notes on science and engineering topics, from 1840 onwards, and his interests were extremely varied, including, in his youth, botany, music theory and number theory, and, in his mature years, most major branches of science, mathematics and engineering
In 2013 he was one of four inductees to the Scottish Engineering Hall of Fame.
He was awarded for Keith Medal of the Royal Society of Edinburgh.
(This book was originally published prior to 1923, and rep...)
( This work has been selected by scholars as being cultura...)
He was an enthusiastic and most useful leader of the volunteer movement from its beginning, and a writer, composer and singer of humorous and patriotic songs.